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The linear stability of the Bickley jet in the framework of the beta-plane approximation
is considered, with the objective of presenting analytical calculations which add to
previous numerical computations. It is well-known that the equation governing the
neutral solutions which are analytic at the critical layer can be transformed into
an associated Legendre equation. It turns out that this particular equation has
simple closed-form solutions other than those known already, which are the Legendre
polynomial of degree two, and two associated Legendre functions of the first kind,
respectively. This observation makes it possible to find analytic neutral modes and
corresponding neutral curves in the (β, k)-plane not known previously, both for the
bounded and the unbounded Bickley jet. Here β denotes the beta-parameter and k

the wavenumber. These neutral curves comprise parts of the stability boundary. It is
shown that the line segment (β = −2, 0 < k <

√
2) is part of the stability boundary

for the unbounded Bickley jet, so the region for the unstable radiating modes is larger
than the one obtained previously. Also, analytic sinuous and varicose modes and
corresponding neutral curves are found in the case of the bounded flow where only
numerical calculations have previously been presented. Furthermore, local stability
analysis reveals weakly amplified modes with wave speed outside the range of the
velocity profile for the Bickley jet. This is rather rare, although Pedlosky’s theorem
allows for it, and there are only a few examples of flows in which such modes occur.
Here these modes are sinuous modes and occur when the flow is both bounded and
unbounded.

1. Introduction
Studies of the barotropic instability of two-dimentional jets, which play an

important role in many geophysical and astrophysical flows, have been the objective
of several previous papers, and many of them (Lipps 1962; Howard & Drazin
1964; Drazin, Beaumont & Coaker 1982; Maslowe 1991; Balmforth & Piccolo
2001) have presented inviscid linear stability calculations of the Bickley jet. For
the unbounded Bickley jet parts of the stability boundary in the (β, k)-plane (where k

is the wavenumber) are known analytically, as given by Lipps (1962), Howard &
Drazin (1964) and Maslowe (1991). Two neutral modes, one sinuous and one
varicose, and the corresponding neutral curves were found analytically by Lipps
(1962); these modes are exponentially decaying at infinity. The analytic part of the
stability boundary found by Maslowe (1991), which consists of sinuous modes that
are bounded at infinity but neither radiate nor decay exponentially, comprises part of
the stability boundary for the unstable radiating modes. Maslowe (1991) also found
numerically that the neutral curve given by Howard & Drazin (1964) forms part



316 L. Engevik

of the stability boundary for the varicose mode, as opposed to the conclusion of
Howard & Drazin which was that it was a sinuous mode and not a part of the
stability boundary. The missing portions of the stability boundary for the sinuous
mode of instability are computed numerically in the paper of Maslowe (1991). On
the part which descends from the point (β, k) = (−2,

√
2) he found by a careful

numerical study that the neutral modes must have the wave velocity c = 1. However,
the stability boundary which is obtained differs somewhat from the correct one. In
this note it is shown analytically that it is in fact the line (β = −2, 0 < k <

√
2)

which bounds the instability region of the radiating sinuous modes to the left in the
(β, k)-plane and that it consists of radiating sinuous modes with c = 1.

Concerning the bounded Bickley jet, no parts of the stability boundary and no
neutral modes have previously been found analytically. However, in this case as well
sinuous and varicose modes and corresponding neutral curves which comprise parts
of the stability boundary can be found analytically, as shown in this note. Moreover,
some local stability analysis are presented both for the sinuous and the varicose
modes.

The plan of the paper is as follows. Section 2 introduces the basic equation and the
Legendre equation governing the neutral solutions which are analytic at the critical
layer, and the solutions of this particular equation are given. In §§ 3 and 4 analytical
calculations for the bounded and the unbounded Bickley jet are presented.

2. Mathematical formulation
The linear stability of a parallel shear flow in the framework of the beta-plane

approximation is considered. The basic flow velocity is assumed to be directed
along the x-axis and varies in the vertical y-direction. The basic equation describing
the evolution of the flow is the vorticity equation, which is linearized to give the
equation governing the small-amplitude disturbances. If the perturbation stream
function Ψ = φ(y) exp{ik(x − ct)} is introduced into the linearized vorticity equation
the Rayleigh–Kuo equation is obtained, i.e.

(U − c)(φ′′ − k2φ) − (U ′′ − β)φ = 0, (2.1)

where U (y) is the basic flow velocity, φ(y) the amplitude function, k the wavenumber,
c the wave velocity which may be complex, and β measures the Coriolis effect. The
flow either may be bounded by two horizontal planes at y = ±L and then the
boundary conditions are φ = 0 at y = ±L, or it may be of infinite extent and then φ

is finite when y → ±∞.
We investigate the barotropic instability of the Bickley jet where U = sech2(y).

Although β is always positive, changing its sign is mathematically equivalent to
reversing the flow direction (Howard & Drazin 1964); therefore the results presented
below for β < 0 and U = sech2(y) correspond in reality to the retrograde jet
U = −sech2(y) with β > 0.

Introducing the new variable ζ = tanh(y) into (2.1) with U = sech2(y) yields

(1 − ζ 2)φ′′ − 2ζφ′ +

(
6 − k2

1 − ζ 2
− (4 − 6c)(1 − ζ 2) − β

(1 − ζ 2)(1 − ζ 2 − c)

)
φ = 0, (2.2)

where the prime now denotes differentiation with respect to ζ .
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If β = (4 − 6c)c then (2.2) has no singularity at the critical layer where U (y) = c,
and the equation becomes

(1 − ζ 2)φ′′ − 2ζφ′ +

(
6 − m2

1 − ζ 2

)
φ = 0, where m2 = k2 + 4 − 6c. (2.3)

For m = 0 this is the Legendre equation with the solution P2(ζ ), the Legendre
polynomial of degree two, which is finite at ζ = ±1 (ζ = ±1 corresponds to
y = ±∞). This solution was given by Maslowe (1991) and the corresponding
neutral curve comprises part of the stability boundary. For m �= 0 this is the asso-
ciated Legendre equation, which, when m = 1 and m = 2, has the solutions P 1

2 (ζ )
and P 2

2 (ζ ), the associated Legendre functions of the first kind, which are finite at
ζ = ±1. These solutions were given by Lipps (1962) and the corresponding neutral
curves form parts of the stability boundary as well. However, it was noted by Engevik
(2000) that (2.3) has the following simple closed-form solutions for all values of m:

φ1 =

(
1 − ζ

1 + ζ

)m/2

(3ζ 2 + 3mζ + m2 − 1),

φ2 =

(
1 + ζ

1 − ζ

)m/2

(3ζ 2 − 3mζ + m2 − 1).




(2.4)

These solutions are linearly independent when m �= 0, 1, 2; for m = 0, 1, 2 they reduce
to P2(ζ ), P 1

2 (ζ ) and P 2
2 (ζ ) respectively.

If we express these solutions in the variable y, they become

φ1 = e−my(3 tanh2(y) + 3m tanh(y) + m2 − 1),

φ2 = emy(3 tanh2(y) − 3m tanh(y) + m2 − 1).

}
(2.5)

In the context of the stability of the Bickley jet m2 may be both positive and
negative, i.e. m may be either real or purely imaginary which may give rise to either
exponentially decaying modes or radiating modes at infinity.

3. Bounded Bickley jet
3.1. Sinuous modes

The neutral solutions for the sinuous modes are even functions of y and are obtained
from (2.5). When m is real we find that

φ0(y) =
(
3 tanh2(y) + α2

0 − 1
)
cosh(α0y) − 3α0 tanh(y) sinh(α0y),

c = 2
3

− 1
6

(
α2

0 − k2
)
,

}
(3.1)

and the corresponding neutral curve

β = 1
6

(
k2 − α2

0 + 4
)(

α2
0 − k2

)
. (3.2)

Here α0 �= 1 is the solution of the equation

tanh(mL) =
3 tanh2(L) + m2 − 1

3m tanh(L)
, (3.3)

when such a solution exists, which is the case when 3 tanh2(L) − 1 � 0, i.e. L � L0 =
0.65847 · · · . When L < L0 no sinuous mode of the kind given in (3.1) exists. However,
(3.3) has the solution m = 1 for all values of L as well, but the amplitude function
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φ(y) is equal to zero when m = 1, so we have no sinuous mode for this value of m.
When L → ∞ then α0 → 2 and the sinuous mode given by Lipps (1962) is obtained.

When m is purely imaginary a number of neutral modes and corresponding neutral
curves may exist; the number increases with L. We find that

φj =
(
3 tanh2(y) − α2

j − 1
)
cos(αjy) + 3αj tanh(y) sin(αjy),

c = 2
3

+ 1
6

(
α2

j + k2
)
,

}
j = 1, . . . , N. (3.4)

The corresponding neutral curves are

β = − 1
6

(
k2 + α2

j + 4
)(

k2 + α2
j

)
. (3.5)

Here αj is the solution of the equation

tan(αL) = −3 tanh2(L) − α2 − 1

3α tanh(L)
(3.6)

and is in addition subjected to the condition αj <
√

2 since β > −2. (A necessary
condition for instability is that −2 < β < 2/3, which follows from a generalization
of Rayleigh’s inflection point theorem giving that the quantity (U ′′ − β) must change
sign within the flow region for instability to occur.) There are only a finite number
of solutions of (3.6) which satisfy this condition. (When L < L0 no αj <

√
2 exists,

so then there are no sinuous modes of either the kind given in (3.1) or of the kind
given in (3.4).) We notice that all of these neutral curves are parts of parabolas in the
(β, k2)-plane, those parts for which −2 � β � 2/3 and k2 � 0.

To determine on what side of the neutral curve in the (β, k)-plane there is instability
we have to know the stability characteristics in the neighbourhood of the curve, which
can be achieved by a perturbation of the known neutral solution. Let the amplitude
function, the wave velocity, the wavenumber and the beta-parameter for the neutral
solution and the contiguous unstable solution be denoted by φs , cs , ks , βs , φ, c, k

and β respectively. Both the unstable and the neutral solution satisfy (2.1) and the
boundary conditions, from which it follows that

(c − cs)

∫ L

−L

(6 tanh2(y) − 2 − 6cs)φ(y)φs(y)

tanh2(y) − (1 − c)
dy

−
(
k2 − k2

s

) ∫ L

−L

φ(y)φs(y) dy − (β − βs)

∫ L

−L

φ(y)φs(y)

tanh2(y) − (1 − c)
dy = 0. (3.7)

Let β = βs . When k → ks , then c → cs and φ → φs and applying Plemelj’s formula
(see Muskhelishvili 1953) it follows from (3.7) that

c − cs =
(I1 + iπK)I0

(
k2 − k2

s

)
I 2
1 + π2K2

, (3.8)

where

K =
(2 − 6cs)φ

2
s (ys)

cs

√
1 − cs

,

I0 =

∫ L

0

φ2
s (y) dy,

I1 = P

∫ L

0

(6 tanh2(y) − 2 − 6cs)φ
2
s (y)

tanh2(y) − (1 − cs)
dy,




(3.9)
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where φs(y) is given by either (3.1) or (3.4), ys is the solution of the equation
tanh(y)=

√
1 − cs , and P in front of the integral sign denotes the principal value of

the integral. From (3.8) it follows that when K < 0 there is instability for k < ks and
when K > 0 instability occurs for k > ks . This means that there is instability below
that part of the neutral curve in (3.2) where k >

√
α2

0 − 2 and above that part where

k <
√

α2
0 − 2. For the modes given by (3.4) K < 0 for all j so there is instability

below these neutral curves.
K in (3.9) is not defined for cs = 1, which occurs at the points where the neutral

curves intersect the line β = −2. However, (3.7) is still valid with cs = 1, βs = −2,

and ks = k̂, where k̂ is equal to either
√

2 + α2
0 or

√
2 − α2

j , j = 1, . . . , N . We put

c = 1 − c̄, β = −2 + β̄ and κ = k − k̂, where |c̄| � 1, β̄ � 1 and |κ | � 1, into (3.7)
and obtain, when only the dominant terms are retained,

c̄ − iΓ κ
√

c̄ − β̄

8
= 0, (3.10)

where Γ = I0k̂/2πφ2
s (0), I0 is given by (3.9) and φ2

s (0) by either (3.1) or (3.4). Equation
(3.10) reveals instability if κ < 0 and β̄ > 2Γ 2κ2 and then

c̄ = 1
4
(R2 − Γ 2κ2 + 2iΓ Rκ), where R =

√
1
2
β̄ − Γ 2κ2. (3.11)

Let (β, k) = (−2, k̂) be the point of intersection between either one of the neutral
curves given by (3.2) or (3.5) and the line β = −2. It follows from the analysis above
that near this point there is instability in a wedge-like region bounded above by this
neutral curve and below by the curve β̄ = 2Γ 2κ2, which is a parabola in the (β, k)-
plane. In this instability region c̄r < 0 when 2Γ 2κ2 < β̄ < 4Γ 2κ2, and c̄r > 0 when
β̄ > 4Γ 2κ2. When β̄ = 4Γ 2κ2 then c̄ is purely imaginary. In non-rotational shear
flows Howard’s (1961) semicircle theorem states that the real part of the complex
wave velocity c = cr + ici must lie within the range of the velocity profile U (y).
However, a modified version of this semicircle theorem due to Pedlosky (1964) allows
for cr to be outside the range of U (y) if the beta-effect is included, which is what
happens in the instability region where c̄r < 0.

Let L = 10. To obtain the neutral curves given by (3.2) and (3.5) we have to solve
(3.3) and (3.6) to find α0 and the αj , j = 1, 2, . . . for which αj <

√
2. We find that

α0 = 2.00, α1 = 0.18, α2 = 0.55, α3 = 0.90, α4 = 1.24, and the corresponding neutral
curves which are labelled (a), (b), (c), (d) and (e) are shown in figure 1. It is found
that the solution of (3.3) differs very little from 2 so the curve labelled (a) is in fact
the neutral curve for the sinuous modes found by Lipps (1962) for the unbounded
Bickley jet. This illustrates that the neutral mode corresponding to α0, which is
decaying exponentially outward, is not very sensitive to the boundary conditions. The
stability analysis above shows that these neutral curves form parts of the stability
boundary. These curves have been computed numerically by Balmforth & Piccolo
(2001). Futhermore, we have shown analytically that near the points where the neutral
curves (a), (b), (c), (d) and (e) intersect the line β = −2 there is instability in wedge-
like regions bounded above by these neutral curves and below by curves that are
parabolas on which the neutral modes have cr > 1 in agreement with the numerical
findings of Balmforth & Piccolo (2001). While the upper boundary of each tongue
in figure 1 can be found analytically this is not so for the lower boundary except
in a region close to β = −2. On the lower boundary it appears to be impossible to
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Figure 1. The hatched regions are the instability regions for the sinuous modes when L = 10.
The upper boundaries of the tongues are the neutral curves: β = (k2 − α2

0 + 4)(α2
0 − k2)/6 and

β = −(k2 +α2
j +4)(α2

j +k2)/6, j = 1, 2, 3, 4, labelled (a), (b), (c), (d) and (e) respectively, where
α0 = 2.00, α1 = 0.18, α2 = 0.55, α3 = 0.90 and α4 = 1.24. The lower boundaries of the tongues
have been computed numerically by Balmforth & Piccolo (2001).

transform the equation that governs the neutral modes into any well-known equation
with simple closed-form solutions, which is the case on the upper boundary.

3.2. Varicose modes

The neutral solutions for the varicose modes are odd functions of y and are obtained
from (2.5) as well. In this case the neutral solutions, the wave velocities and the
neutral curves are as follows:

φ0(y) =
(
3 tanh2(y) + α2

0 − 1
)
sinh(α0y) − 3α0 tanh(y) cosh(α0y),

c = 2
3

− 1
6

(
α2

0 − k2
)
,

β = 1
6

(
k2 − α2

0 + 4
)(

α2
0 − k2

)
,


 (3.12)

and

φj =
(
3 tanh2(y) − α2

j − 1
)
sin(αjy) − 3αj tanh(y) cos(αjy),

c = 2
3

+ 1
6

(
α2

j + k2
)
,

β = − 1
6

(
k2 + α2

j + 4
)(

k2 + α2
j

)
.


 j = 1, · · · , N. (3.13)

Here α0 �= 2 is the solution of the equation

coth(mL) =
3 tanh2(L) + m2 − 1

3m tanh(L)
, (3.14)
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when such a solution exists, i.e. when L � L0. However, (3.14) has the solution m = 2
for all values of L as well, but the amplitude function φ(y) is equal to zero when
m = 2, so we have no varicose mode for this value of m. When L → ∞ then α0 → 1
and the varicose mode given by Lipps (1962) is obtained.

We now find αj , j = 1, . . . , N , which is the solution of the equation

cot(αL) =
3 tanh2(L) − α2 − 1

3α tanh(L)
, (3.15)

where αj <
√

2 since β > −2. (When L < L0 there is no αj <
√

2 , and then there are
no varicose modes, either of the kind given in (3.12) or of the kind given in (3.13).)

The instability side of these neutral curves is obtained from (3.8), which is applicable
in this case as well. We find that there is instability on the lower side of these neutral
curves. Near the points where the neutral curves intersect the line β = −2 the
instability region is determined from the following equation, where only the dominant
terms have been retained:

{I2 + 4iπA
√

c̄r}c̄ + 2k̂I0κ +
{
I3 − 1

2
iπA

√
c̄r

}
β̄ = 0, (3.16)

where c̄, κ , β̄ , k̂ and I0 are defined previously and

I2 =

∫ L

0

(6 tanh2(y) − 8)φ2
s (y)

tanh2(y)
dy, I3 =

∫ L

0

φ2
s (y)

tanh2(y)
dy,

A =
(
α3

0 − 4α0

)2
or

(
α3

j + 4αj

)2
, j = 1, · · · , N,


 (3.17)

where we notice that I2 < 0.
From (3.16) it follows that

c̄r = − 1

I2

{2k̂I0κ + I3β̄}, c̄i =
πA

√
c̄r

2I2

{β̄ − 8c̄r}. (3.18)

There is instability when c̄i < 0 which corresponds to ci > 0. This occurs in a wedge
bounded above by either of the neutral curves in (3.12) or (3.13) and below by
the curve 2k̂I0κ + I3β̄ = 0, which follows from (3.18). Notice that β̄ − 8c̄r = 0 to the
lowest order on the neutral curves given by (3.12) or (3.13) near the points where
these curves intersect the line β = −2. In the instability region c̄r > 0, which means
that in this case cr lies within the range of U (y), as opposed to what was found in the
sinuous modes case where unstable modes with cr outside the range of U (y) occur.

The neutral curves for the varicose modes have also been obtained in the case
when L = 10. It is found that α0 = 0.99999998, α1 = 0.37, α2 = 0.73, α3 = 1.07,
α4 = 1.4137, and the corresponding neutral curves labelled (a), (b), (c) and (d) are
shown in figure 2, except for the curve corresponding to α4 which is so close to
the lower left corner of the diagram that it does not show in the figure. However,
there is a small instability region here which has not been noted previously. We see
that α0 is almost equal to 1 when L = 10 so the curve labelled (a) is very close the
neutral curve for the varicose modes found by Lipps (1962), and this shows that the
mode corresponding to α0 is not very sensitive to a change in L. These neutral curves
comprise parts of the stability boundary, which follows from the stability analysis
above. Figure 2 shows four separate instability regions, each being bounded above
by these neutral curves. The upper instability region is bounded below by the curve
β = −k2(1 − k2/9) (Howard & Drazin 1964), which consists of neutral modes with
cr = 1. This curve was found by Howard & Drazin for the unbounded Bickley jet,
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Figure 2. The hatched regions are the instability regions for the varicose modes when
L = 10. They are bounded above by the neutral curves: β = (k2 − α2

0 + 4)(α2
0 − k2)/6

and β = −(k2 + α2
j + 4)(α2

j + k2)/6, j = 1, 2, 3, labelled (a), (b), (c) and (d) respectively, where
α0 = 1.00, α1 = 0.37, α2 = 0.73, α3 = 1.07. The upper instability region is bounded below by
the neutral curve β = −k2(1 − k2/9) (Howard & Drazin 1964). The lower boundaries of the
other regions have been computed numerically by Balmforth & Piccolo (2001).

but it seems to be a good approximation when L = 10. The curves that yield the
lower boundaries for the other instability regions have been computed numerically
by Balmforth & Piccolo (2001) who found that these boundaries consist of neutral
modes with cr = 1 as well.

In this note analytic expressions for these curves, valid near β = −2, are found.
The stability analysis above shows instability in wedge-shaped regions near β = −2,
the lower boundaries of which are lines where the neutral modes have cr = 1. The
upper boundaries of the instability regions in figure 2, which are found analytically
in this note, have also been computed numerically by Balmforth & Piccolo.

4. Unbounded Bickley jet
The hatched region in figure 3 shows the instability region for the sinuous modes. It

is bounded by the neutral curves labelled (a), (b), (c) and (d). Three of them, labelled
(a), (c) and (d) respectively, are given analytically: β = k2(4 − k2)/6 (Lipps 1962),
β = −k2(k2 + 4)/6 (Maslowe 1991) and β = −2, 0 < k <

√
2 (given in this note).

The curves labelled (a) and (c) and the corresponding neutral modes can be obtained
from the results in § 2 if m is taken to be 2 and 0 respectively. The curve labelled (b)
has been computed numerically by Maslowe (1991). Maslowe reported that numerical
results for ci > 0 obtained by Deblonde (1981) show that weakly amplified modes
exist that do not have critical layers when ci → 0+ in the region towards the upper
left of the stability diagram in figure 3. This is in agreement with the analytical results
given in this note. The stability characteristics in this region, which is bounded below
by the curve β̄ = 4κ2/3π2 locally, are governed by (3.10) with Γ =

√
6/3π since
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Figure 3. The hatched region is the instability region for the sinuous modes of the unbounded
Bickley jet. The instability region is bounded by the curves: β = k2(4 − k2)/6 (Lipps 1962),
β = −k2(k2 + 4)/6 (Maslowe 1991) and β = −2, 0 < k <

√
2 labelled (a), (c) and (d)

respectively, and the curve labelled (b) has been computed numerically by Maslowe (1991).

φs = sech2(y) in this case, and we find that

c̄ =
1

4

{
R2 − 2κ2

3π2
+

2
√

6Rκ

3π
i

}
, R =

√
β̄

2
− 2κ2

3π2
. (4.1)

We see that c̄r changes sign in this instability region; c̄r < 0 where 4κ2/3π2 < β̄ <

8κ2/3π2 which means that cr > 1 and therefore lies outside the range of U = sech2(y)
in accordance with the numerical findings of Deblonde as mentioned above. c̄ is
purely imaginary along the curve β̄ = 8κ2/3π2, and in the rest of the instability region
c̄r > 0 which means that here cr lies within the range of U (y).

Figure 3 corresponds to figure 2 in the paper of Maslowe (1991) except for that
portion of the stability boundary which descends from the point (β, k) = (−2,

√
2).

After a careful numerical study Maslowe concluded that this part of the stability
boundary must consist of singular radiating modes with c = 1. He gave a numerical
method to calculate this part of the stability boundary which is shown in figure 2 of

his paper. However, the stability boundary is in fact the line (β = −2, k =
√

2 − α2,
where 0 < α <

√
2), and this part consists of radiating modes with c = 1; the

amplitude function being

φs(y) =

{
φ1 = e−iαy(3 tanh2(y) + 3iα tanh(y) − α2 − 1) for y > 0,

φ2 = eiαy(3 tanh2(y) − 3iα tanh(y) − α2 − 1) for y < 0.
(4.2)

This follows from the results in § 2. We see that φs(y) satisfies the radiation condition
when y → ±∞ as given by Maslowe (1991) and that there is a jump in the Reynolds
stress across the critical layer y = 0.
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Contiguous to the neutral solution an unstable solution exists with the wave velocity
c = 1 − c̄, the wavenumber k = ks and the parameter β = −2 + β̄ , where |c̄| � 1 and
β̄ � 1, and we find that

c̄ =
(1 + α2)2π2

4α2(α2 + 4)2
β̄2 − iΛβ̄3 + · · · , (4.3)

where Λ is positive and depends on α. For details, see the Appendix. As we see this
is a very weak instability.

5. Conclusions
The equation governing the neutral solutions which are analytic at the critical

layer can be transformed into an associated Legendre equation, and this particular
equation has simple closed-form solutions which have been overlooked in previous
works on barotropic stability of the Bickley jet. Applying these solutions leads to new
analytic neutral modes and corresponding neutral curves which form parts of the
stability boundary in the (β, k)-plane. For the unbounded Bickley jet this yields that
the line segment (β = −2, 0 < k <

√
2) is a portion of the stability boundary and

that it consists of sinuous modes with wave velocity c = 1. Therefore, the instability
region of the radiating sinuous modes is bounded to the left in the (β, k)-plane by this
line segment and is larger than the one given previously. For the bounded Bickley
jet, for which case only numerical calculations have been presented so far, this leads
to analytic sinuous and varicose modes and neutral curves that comprise parts of the
stability boundary; the number of these modes increases with the distance between
the planes which bound the flow.

An equation which yields the stability characteristics for the sinuous modes near
the point (β = −2, k =

√
6) on the stability boundary of the unbounded Bickley jet is

obtained. It reveals weakly unstable modes which have wave speed outside the range
of the velocity profile U (y) as well as modes with wave speed inside this range. The
former are rather rare but have been revealed previously by numerical calculations.
In the case of the bounded Bickley jet a number of neutral sinuous modes exists
which intersect the line β = −2, and the stability characteristics near these points are
given by the same type of equation as the one found for the unbounded flow, so in
this case as well weakly unstable modes exist with wave speed outside the range of
U (y). An equation valid in the instability region near the points of intersection of
the neutral varicose modes and the line β = −2 is also obtained, but this equation
reveals no weakly unstable modes with wave speed outside the range of U (y).

Appendix
We consider a solution φ close to φs given by (4.2) with the corresponding wave

velocity c = 1 − c̄, the wavenumber k = ks and the parameter β = −2 + β̄ , where
|c| � 1 and β̄ � 1. The equation for φ(y) is obtained from (2.1) with U = sech2(y),
which yields

φ′′ + (6sech2(y) + ᾱ2)φ − F (U, β̄, c̄)φ = 0, (A 1)

where

ᾱ2 = α2 +
2c̄ − β̄

1 − c̄
,

F (U, β̄, c̄) =
γ

cosh2(y)(tanh2(y) − c̄)
, γ =

β̄ − 8c̄ + 6c̄2

1 − c̄
.


 (A 2)
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The equation

φ′′ + (6sech2(y) + ᾱ2)φ = 0 (A 3)

has two linearly independent solutions when ᾱ �= 0,

ψ0+ = e−iᾱy(3 tanh2(y) + 3iᾱ tanh(y) − ᾱ2 − 1),

ψ0− = eiᾱy(3 tanh2(y) − 3iᾱ tanh(y) − ᾱ2 − 1).

}
(A 4)

We see that ψ0+ and ψ0− are equal to φ1 and φ2 given by (4.2) respectively if ᾱ is
replaced by α.

Since β̄ � 1 and |c̄| � 1 two approximate solutions φ+ and φ− to (A 1) can be
written as

φ± = ψ0± + ψ1± + ψ2±, (A 5)

where

ψ1± =
ψ0±

W±

∫ ±∞

y

Fψ0+ψ0− dτ − ψ0∓

W±

∫ ±∞

y

Fψ2
0± dτ ,

ψ2± =
ψ0±

W±

∫ ±∞

y

Fψ1±ψ0∓ dτ − ψ0∓

W±

∫ ±∞

y

Fψ1±ψ0± dτ ,




(A 6)

where W± = ψ0±ψ0∓
′ − ψ0±

′ψ0∓; φ+ satisfies the boundary condition at y = +∞
while φ− satisfies the condition at y = −∞. In the region where they overlap their
Wronskian must be zero if they are to be linearly dependent, i.e.

φ+(0)φ−
′(0) − φ+

′(0)φ−(0) = 0. (A 7)

Introducing the expressions for φ+ and φ− into (A 7) yields

2iᾱ(ᾱ2 + 1)(ᾱ2 + 4) +

∫ ∞

0

Fψ0+ψ0− dτ +

∫ ∞

0

Fψ2
0+ dτ

+

∫ ∞

0

Fψ1+ψ0+ dτ +

∫ ∞

0

Fψ1+ψ0− dτ = 0. (A 8)

We expand the left-hand side of (A 8) in powers of c̄ and β̄ , and the equation is
satisfied to the lowest order if

c̄ =
(1 + α2)2π2

4α2(α2 + 4)2
β̄2 − iΛβ̄3 + · · · . (A 9)

This is the expression given in (4.3).
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